
CORRESPONDENCE

circuits which exist when the jig is empty.
However, the property of the S’-matrix shown
in(6) refers the S-elements to the center ofa
three-port juuction containing the negligibly
small lumped element network. Therefore if
scattering measurements are made on only
two ports and the three-port S-matrix con-
structed, errors duetothe physical size of the
device in relation to the wavelength will be
introduced. For the active semiconductor
region itself, such error is negligible for fre-
quencies at which transistors are likely to
operate in the near future, buttheencapsula-
tions are sufficiently large toprodnce errors.
However, if future encapsulations are de-
signed to provide access lines of characteristic
admittance up to the semiconductor chip it-
self, then this source of error wiObeinsignifi-
cant.

APPENDIX1

Proof of Scattering Matrix Result

The foregoing correspondence states that
“it is readily seen that the rows and columns
of [S] (the scattering matrix in Anderson’s
notation) add to unity.” Since the general
proof of this does not appear in any of the
texts and works consulted either on circuit
theory or matrix algebra it is presented as fol-
lows.

Iftwo matrices [A] and [B]are such that
their rows and/or columns sum to a, b, respec-
tively, then it is evident that the rows and/or
columns of the matrix [A+B] will sum to
a+b and less obvious (but true) that their
product sums to the product ab. Let us check
the product property for, say, the row sum.
The row sum is as follows:

The column sum property is proved in the
same manner.

Now the unit matrix [1] obviously sums
to one for both rows and columns. Using this
fact, the product property and argument simi-
lar to (8) one can prove a useful property
of the inverse matrix [A–l], by consider-
ing [A][A-l]= [l] for column sums and
[A-’] [A] = [1 ] for row sums. The property is
this: the inverse of a matrix whose rows and/
or columns sum to a is a matrix whose rows
and/or columns sumtoa–l. Now the scatter-
ing matrix [s] is given by

[S]= ([ I]-[YI)([lI+[YI)-’ (9)

and we are told that the normalized admit-
tance matrix [Y] has, by Kirchhoff’s laws, rows
and columns which sum to zero. The row and
column sum of the scattering matrix [S] is
immediately [(1 –0)( 1+0)–1 = 1] one.
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Transmission-Line Treatment

of Waveguides Filled with a

Moving Medium

To the author’s knowledge, a theoretical
study of guided waves in a moving isotropic
medium was first investigated by Collier and
Tai.1 They derived the electromagnetic fields
within a source-free region of a circular or rec-
tangular waveguide by the method of vector
potentials,

This correspondence discusses the problem
of determining the vector fields produced by
arbitrary electric and magnetic impressed cur-
rents in a uniform waveguide of arbitrary
cross section filled with a dielectric medium,
which moves down the waveguide with a con-
stant velocity, by representing the fields in
terms of a suitable set of vector mode func-
tions.
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Substituting (2) into (l), we obtain the follow
ing equations for EO and HO:

V x Eo = – j’c.wHo – Jo*

(V – .WV) X Ho = jcotEo + Jo. (3)

Even if the medium involved is moving
with constant velocity along the perfectly con-
ducting guide walls, the electric and magnetic
fields should satisfy the same boundary con-
ditions as in the case of stationary media:t

ZLXE=O nXEO=O
or

n.H=O n.HO = O (4)

where n denotes a unit vector normal to the
guide walls. The electric and magnetic fields
Eo and HO which satisfy the inhomogeneous
field equations (3) and subject to the boundary
conditions (4), are then expressed in the fol-

L e&PfllvE
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Fig. 1. Uniform waveguide of arbitrary cross section filled with a moving medium.
(a) Cross sectional view. (b) Longitudinal view.

Let us assume that a homogeneous, iso-
tropic, and lossy medium is moving with con-
stant velocity v = vi., past an observer at rest
with respect to the waveguide (see Fig. 1). As
long as the velocity of the medium is much
smaller than the velocity of light, the electro-
magnetic fields inside a waveguide, measured
in the rest frame of the observer, can be deter-
mined by the following Maxwell-Minkowski
equations ?

(v–j.A)x E=–jwH -J*
(V – j.A – WV) X H = @~E +J (1)

where

A = (.IJ – WJO)V= Ai,, A = (q- .OLLO)O

g = E(I —ju/ue)
CO, PO= permittivity and permeability of

free space

c, ~, u = permittivity, permeability, and
conductivity of the medium at rest

J, J*= impressed electric and magnetic
current densities

and the time variation of the fields has been
assumed to be e+ju *.

To obtain the solution of the foregoing in-
homogeneous field equations, we first trans-
form these equations into more familiar
forms. This can be done by letting

Manuscript received .IuIY 25, 1966; revised Novem-
ber 14, 1966.
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lowing forms in terms of the vector mode
functions:

E,, = ~ [VZ’(2)M’ + VP(Z)MPI
i

Hot = ~ [–IP(z)AT,” + Itw)ivrl
i

E,e= ~ [(k;’)’v.i(mr,,]
i

HO. = ~ [(H)zIA)N..1 (5)
i

where Vie, Vim, V.; and Ite, I;m, Li are mode
voltages and currents, respectively. The super-
scripts e and m denote the electric (or TM)
modes and the magnetic (or TE) modes, re-
spectively. Also, the subscripts t and z are em-
ployed to designate the transverse field com-
ponents and the longitudinal ones, respec-
tively.

The vector mode functions Mie, Ni’, Mi

and M~m, N~m, Ngi are characterized by the
following equations:

Mi! = V;*,” , M;m = V@,n X L

N,e = V,%e X i., Ni~ = V@tm

M,< = ~<ei~ , Na~ = l?,mi~ (6)

where the functions @;eand %- are derived
from the scalar eigenvalue problems

v,%’ + (ki’)%’ = o

v+Z& + (ki-)%~ = o (7)

subject to

@i’ = o

&W/W = O (8)

~R. C. Costen, and D. Adamson, “Three-dimefi-
sional derivation of the electmdynamic iump conditions
and momentum-energy laws at a moving boundary,”
I%oc. IEEE, vol. 53, pp. 11S 1-11S7, September 1965.
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on the boundary. The vector mode functions possess the following orthogonality properties:

.LfM,e. M,edi3 =
D

N,e. N,’dS = (k,e)2
SJ

+,’%, ‘dS
jl fori=j——

uM,.. Mjmds = H .Lf 40 fori#j
N,m. N,~dS = (ktm)’ %m@,~dS

.rJ
M,e. M,mdS =

U
N,e. N,mdS = 0, for all i,j.

where the integrations are evaluated over the
entire guide cross section.

From (3) and (5), together with the bound-
ary conditions (4) and the orthogonality
properties (9), we obtain:

dV#
— – (at6/j&)I,e = (1/jui2)g$e(2)

dz

dI,e

dz –
WU1,’ + jwW,e = — h,e(z) (10)

= – (l/jcop)gt~(,) (11)

V,m = – jo.lprzt –
D

Jo,*@,mdS. (12)

In the foregoing equations, we have intro-
duced the following notations:

%’ = ;2 – (It,’)z, a,~ = t’ – (k,~)z

L~ = U%p = 02.P(l – ju/ue)

g.’(z) = jd
JJ

J,,*. N,edS

(9)

h,”(z) =
D

Jo, . M,edS

h,m(.z) =
.lY

J,,* . NjmdS. (13)

Thus, the problem of determining the vec-
tor fields in a waveguide filled with a moving
medium is reduced to that of solving an infi-
nite set of inhomogeneous transmission-line
equations (10) and (11). The complete solu-
tion of (10) and (11) is composed of a part
due to sources at finite distance and a part
due to sources at infinity; these correspond,
respmtively, to the particular solution and
the complementary solution of the equations.

The particular solution of the inhomo-
geneous transmission-line equations (10) and
(11) may be obtained by means of the tech-
nique of scalar Green’s function as follows:

and

VP(Z) = –
12

J-[ g,~(~’) + (~+~)h.~(z’)]e~-nf’–’’jdz’
-Y+m— Y–m –.

1-
— J-[ 9t~(z’) + (y–m)h,~(z’)]e~+m (z-s~)dzr

‘t’+’” — ?’-m 2

(14)

(15)

(16)

(17)

(18)

(19)

If the impressed sources are distributed within a finite region, ZI <z <zz, mode volt-
ages Vie, for example, reduce to

1
1 1 22
. . J-[ (-y+”)g,”(z’) + (a,’) h.”(z’)]e7-6@-’’Jd,’, (z > z,)

v,’(z) = ~;~ 7+’ – 7-’ 2’
1 22

J-[

(20)

(~.-e)g,e(z’) + (~,e)h,a(z’) ]e~+’(g-g’jdz’, (Z < z,).
j& ?+e – Y_e .,



where

and

(27)

(’”’+7)
(’”’+3 (28)

LdY,” =+-+ :
UP ‘“- ‘km)’]- (%9’+’9 “ (29)

Thus, the electromagnetic fields produced
by an arbitrary distribution of sources in a
uniform waveguide of arbitrary cross section
filled with a moving medium, can be deter-
mined from (2), (5), and (14)-(19).

Let us next obtain the complementary
solutions for the mode voltages and currents,
i.e., the solutions of (10) and (11) for the
homogeneous case:

dV,’
— – (a,e/j&)I,6 = O

dz

dI,’
——

dz
WUI,’ + j&V,e = O

dV~~
-&- + j.pIi” = o

dI,m
——

dz
VuVI,” — (a,~/jJp)v.~ = o. (22)

(21)

To determine explicit solutions of (21) and
(22), it is convenient to eliminate either Vi or
Ii yielding the one dimensional equations:

d2J7i dV<
——

dz2 purl — + a,V, = O
dz

or

&Ii dIi
——

dz,
/MJV — + CYJi = O

dz
(23)

where the superscript distinguishing the mode
type has been omitted for simplicity, since the
equations are of the same form for both
modes. Thus, the complementary solutions
are written in the following form:

Ii = A~er*”, Vi = B,ey*Z (24)

where Ai and B< are constants and Y* are
given in (16) or (19). The characteristic im-
pedances and admittances can be defined by

Zi =;) Yi=~. (25)
* $

For the homogeneous case, (12) is reduced to

VA = – (It’/j&)

1.; = – (v,~/jCo#). (26)

From expressions (24){26), the electro-
magnetic fields E and H within a source-free
region of a waveguide filled with a moving
medium can be expressed as follows:

The above expressions include, as their
special cases, the results obtained by Collier
and Tai,l who have derived, by the method of
vector potentials, the electromagnetic fields
within a source-free region of a circular or
rectangular waveguide.
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Synthesis of Particular Unit Real

Functions of Reflection Coefficient

Physically realizable input reflection coeffi-
cients of circuits consisting of commensurable
lossless transmission lines and resistors have
been described in terms of the parameter
z= e–i[f~l~d d where f is frequency and fo the
frequency at which a line is a quarter-wave-
length long, resulting in a function of z, p(z),
introduced in Youngl and there called unit
real (ur) functions. Later, the definition of ur
functions was extended, and a test procedure
was given for them.z In the original paper, it
was shown that for a given unit real function
p(z), with reference characteristic impedance
2,, and satisfying p(0)P( m) = 1, a unit element

z, = z, 1 + p(o)

1 – ,0(o)

could be removed leaving a reflection coeffi-
cient

Manuscript received August 3, 1966; revised Sep-
tember 26, 1966.
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~l(z) = _l_ P(z) – 0(0

2 1 – p(z)p(o)
(1)

which would be a lower degree than p(z) in
both numerator and denominator and which
would still be ur.

For a given p(z) which satisfies p(0)P( rn)
=1, there is no guarantee that p,(0)P,( co) will
necessarily also be equal to unity, and so on,
and therefore that the process of removal of
unit elements will necessarily end in a resis-
tive termination. The problem to be discussed
in this correspondence is the form that p(z)
must have so that it will be capable of realiza-
tion by cascaded transmission lines and a re-
sistive termination. From this discussion, a
procedure which tests any p(z) to see whether
or not it has the required form will be derived.

Obviously, from the work previously re-
ferred to, it is necessary that p(z) be ur and
therefore this must be the tlrst test in the pro-
cedure. This condition by itself is not suffi-
cient. This is demonstrated by the fact
that the input p(z) of a cascade of any combi-
nation of unit elements, stubs and fesistors, a
general form not allowed for the restricted
problem under consideration, is still ur. For
the general form, both the magnitude of
P( + 1), the k/2 line condition, or the magni-
tude of p( – 1), the h/4 line condition, will be
equal to unity, whereas for the desired form
of a cascade of unit elements terminated in a
pure resistor p( ~ 1) is a real number less than
unity. Hence, a second necessary condition is
that lP(tl)l #l. Let

anzn +a._lzn–l + . . . +alz +rzo
p(z) =

bnz”+bn-lz”-l+ . . . +b,z +b,
(2)

from which, for ,O(0)P(m) = 1,

aoa.
—=1.
bobm

A special case of (3) occurs when

(3)

a. ao
=*1

G=G
(4)

and if coefficients of (2) are made to conform
to this condition and the resulting p(z) is sub-
stituted into (1), it will be seen that there re-
sults a value of PI(z) for which the degree of
the denominator is one greater than that of
the numerator and for which therefore
PI@)PI( m ) # 1. This means that in this case the
process of reduction of degree of input reflec-
tion coefficient by removal of cascade lines
cannot be continued further. The condition
that p(0) #P(m) therefore constitutes a third
necessary condition.

If the successive removal of unit elements
is investigated by repeated substitution of (2)
into (l), the conditions being imposed at any
kth stage that p~(0)p~( co) = 1, but P~(0)#pi m ),
itis easily found that if the original p(z) is of
order n in both numerator and denominator,
it is necessary that the following relationships
between the coefficients of p(z) must be satis-
fied simultaneously:

1) aoan= bobn

2) aoa._l+alan =bobn_l =blbn

3) aOa~_z+ala~_l+aZa. = bOb._Z

+b,bn_, +b,b.
~

(5)

n) aoal+ala~+ . . . +an-la. = bob,

+b,b,+ . . . +bn_,bn.


